Multiclass Classification- One-vs- all

Hritika Agarwal
2 min readJul 21, 2020

--

Now we will approach the classification of data when we have more than two categories. Instead of y = {0,1} we will expand our definition so that y = {0,1…n}.

Since y = {0,1…n}, we divide our problem into n+1 (+1 because the index starts at 0) binary classification problems; in each one, we predict the probability that ‘y’ is a member of one of our classes.

We will be basically choosing one class and then lumping all the others into a single second class. We do this repeatedly, applying binary logistic regression to each case, and then use the hypothesis that returned the highest value as our prediction.

Sign up to discover human stories that deepen your understanding of the world.

Free

Distraction-free reading. No ads.

Organize your knowledge with lists and highlights.

Tell your story. Find your audience.

Membership

Read member-only stories

Support writers you read most

Earn money for your writing

Listen to audio narrations

Read offline with the Medium app

--

--

No responses yet

Write a response